Taula de Primers més enllà de 1022
201467286689315906290 = # {Primers ≤ x = 1022} = 1 REAL
T17 [0+ # {1021 = x ≤ Primers ≤ x = 1022] = [180340017203297174362] P17 REAL
Projeccions:
T18 [1 + # {1022 = x ≤ Primers ≤ x = 1023] = [1925411314642323575727* ≤ (# {Primers ≤ x = 1023}) ≤ 1925411318945250516319**] (=2)
[*+**/2=] 1925411316793787046023 [REAL 1925320391606803968923]
Desviació Gauss [x/Lnx] +1,93%. Desviació Àvalon +0,004722%
T19 [2 + # {1023 = x ≤ Primers ≤ x = 1024] = [18439625932581348079440* ≤ (# {Primers ≤ x = 1024}) ≤ 18439626007934691176323**] (=3)
[*+**/2=] 18439625970258019627881 [REAL 18435599767349200867866]
Desviació Gauss [x/Lnx] +1,84%. Desviació Àvalon +0,021839%
T20 [3 + # {1024 = x ≤ Primers ≤ x = 1025] = [176956692456109753464925* ≤ (# {Primers ≤ x = 1025}) ≤ 176956693516401712792762**] (=4)
[*+**/2=] 176956692986255733128843 [REAL 176846309399143769411680]
Desviació Gauss [x/Lnx] +1,77%. Desviació Àvalon +0,062417%
T21 [4 + # {1025 = x ≤ Primers ≤ x = 1026] = [1701639232278285992343410* ≤ (# {Primers ≤ x = 1026}) ≤ 1701639243720771931327511**] (=5)
[*+**/2=] 1701639237999528961835460 [REAL 1699246750872437141327603]
Desviació Gauss [x/Lnx] +1,70%. Desviació Àvalon +0,140796%
T22 [5 + # {1026 = x ≤ Primers ≤ x = 1027] = [16397327124313209886740118*] ≤ (# {Primers ≤ x = 1027}) ≤ [16397327385495676493439895**] (=6)
[*+**/2=] 16397327254904443190090006 [REAL 16352460426841680446427399]
Desviació Gauss [x/Lnx] +1,64%. Desviació Àvalon +0,274373%
T23 [6 + # {1027 = x ≤ Primers ≤ x = 1028] = [158351021011559818652117950] ≤ (# {Primers ≤ x = 1028}) ≤ [158351025250789888897118511] (=7)
[*+**/2=] 158351023131174853774618230 [REAL 157589269275973410412739598]
Desviació Gauss [x/Lnx] +1,58%. Desviació Àvalon +0,483379%
T24 [7 + # {1028 = x ≤ Primers ≤ x = 1029] = [1532721820299018799365677467] ≤ (# {Primers ≤ x = 1029}) ≤ [1532721863879661512157651167] (=8)
[*+**/2=] 1532721842089340155761664317 [REAL 1520698109714272166094258063]
Desviació Gauss [x/Lnx] +1,52%. Desviació Àvalon +0,790671%
Valors Progressius Primers
180340017203297174362 P17
1.- Tram 18, P18. 1022_1023.
Càlculs
x17 1,0484017870, Pn+1 = Pnxn. P18 = P17x17 = 1723944032255934610029.
β17 0,8142694928, Pn+1 = ee^(βn) + LnPn. P18 = 1723944028047688854980.
A17 3,3059277179, Pn+1 = eLnPn (An + LnPn) / LnPn + 1. P18 = 1723944028132073169230.
[α17 0,9573584355, ᴫ = A17 α17 = 3,141592653746817318111551536395]
[e = (A17-1)1/β17 (1+(LnP17)-1)-1/β17 = 2,718281828531382259262019566688]
k17 8,2173114042, Pn+1 = (P11/n + P11/n kn)n. P18 = 1723944028101036434402.
ζ17 8,559409247, Pn+1 = (Pn + Pn ζn). P18 = 1723944028057338087485.
∆17 0,045059162, Pn+1 = eln10 Pn – ∆n. P18 = 1723944028205816365084.
σ17 52,20587127, Pn+1 = 9·10n+5/σn. P18 = 1723944027953007669437.
δ17 0,0191549336, Pn+1 = δn 9·10n+5. P18 = 1723944024000000000000
Ordenats de major a menor P18 (x, ∆, A, k, ζ, β, σ, δ)
1723944032255934610029, x17
1723944028205816365084, ∆17
1723944028132073169230, A17
1723944028101036434402, k17
1723944028057338087485, ζ17
1723944028047688854980, β17
1723944027953007669437, σ17
1723944024000000000000, δ17
2.- Tram 19, P19. 1023_1024.
Càlculs
x18 1,0462097659, Pn+1 = Pnx. P19 = P18x18 = 16514214688989440660004
β18 0,8151908144, Pn+1 = ee^(βn) + LnPn. P19 = 16514214619318147353496
A18 3,3058165625, Pn+1 = eLnPn (An + LnPn) / LnPn + 1. P19 = 16514214618555616532675
[α18 0,9573853572, ᴫ = A18 α18 = 3,1415926536627938166117798652309]
[e = (A18-1)1/β18 (1+(LnP18)-1)-1/β18 = 2,7182818283185592844735050023358]
k18 8,2370593195, Pn+1 = (P11/n + P11/n kn)n. P19 = 16514214618243041367842
ζ18 8,579321805, Pn+1 = (Pn + Pn ζn). P19 = 16514214618569190531702
∆18 0,042978296, Pn+1 = eln10 Pn – ∆n. P19 = 16514214625174470059193
σ18 54,49850452, Pn+1 = 9·10n+5/σn. P19 = 16514214617939024503713
Ordenats de major a menor P19 (x, ∆, β, ζ, A, k, σ)
16514214688989440660004, x18
16514214625174470059193, ∆18
16514214619318147353496, β18
16514214618569190531702, ζ18
16514214618555616532675, A18
16514214618243041367842, k18
16514214617939024503713, σ18
3.- Tram 20, P20. 1024_1025.
Càlculs
x19 1,0442084969, Pn+1 = Pnx. P20 = P19x19 = 158517067508467021616439
β19 0,8160905502, Pn+1 = ee^(βn) + LnPn. P20 = 158517066540034667967552
A19 3,3058492576, Pn+1 = eLnPn (An + LnPn) / LnPn + 1. P20 = 158517066531977736894811
[α19 0,9573774382] ᴫ = A19 α19 = 3,1415926535515878544617954412875
k19 8,2557551501, Pn+1 = (P11/n + P11/n kn)n. P20 = 158517066533245502281331
ζ19 8,598825629, Pn+1 = (Pn + Pn ζn). P20 = 158517066523528405385485
∆19 0,040944332, Pn+1 = eln10 Pn – ∆n. P20 = 158517066636837117673275
σ19 56,77622099, Pn+1 = 9·10n+5/σn. P20 = 158517066530108981104978
Ordenats de majors a menors
158517067508467021616439, x19
158517066636837117673275, ∆19
158517066540034667967552, β19
158517066533245502281331, k19
158517066531977736894811, A19
158517066530108981104978, σ19
158517066523528405385485, ζ19