La revista degana en valencià

Hipòtesi Àvalon. Annex III (a)

Taula de Primers més enllà de 1022

201467286689315906290 = # {Primers ≤ x = 1022} = 1 REAL

T17 [0+ # {1021 = x ≤ Primers ≤ x = 1022] = [180340017203297174362] P17 REAL

Projeccions:

T18 [1 + # {1022 = x ≤ Primers ≤ x = 1023] = [1925411314642323575727* ≤ (# {Primers ≤ x = 1023}) ≤ 1925411318945250516319**] (=2)

[*+**/2=] 1925411316793787046023         [REAL 1925320391606803968923]

Desviació Gauss [x/Lnx] +1,93%.              Desviació Àvalon +0,004722%

 

T19 [2 + # {1023 = x ≤ Primers ≤ x = 1024] = [18439625932581348079440* ≤ (# {Primers ≤ x = 1024}) ≤ 18439626007934691176323**] (=3)

[*+**/2=] 18439625970258019627881                      [REAL 18435599767349200867866]

Desviació Gauss [x/Lnx] +1,84%.              Desviació Àvalon +0,021839%

 

T20 [3 + # {1024 = x ≤ Primers ≤ x = 1025] = [176956692456109753464925* ≤ (# {Primers ≤ x = 1025}) ≤ 176956693516401712792762**] (=4)

[*+**/2=] 176956692986255733128843                    [REAL 176846309399143769411680]

Desviació Gauss [x/Lnx] +1,77%.              Desviació Àvalon +0,062417%

 

T21 [4 + # {1025 = x ≤ Primers ≤ x = 1026] = [1701639232278285992343410* ≤ (# {Primers ≤ x = 1026}) ≤ 1701639243720771931327511**] (=5)

[*+**/2=] 1701639237999528961835460                  [REAL 1699246750872437141327603]

Desviació Gauss [x/Lnx] +1,70%.              Desviació Àvalon +0,140796%

 

T22 [5 + # {1026 = x ≤ Primers ≤ x = 1027] = [16397327124313209886740118*]  ≤ (# {Primers ≤ x = 1027}) ≤ [16397327385495676493439895**] (=6)

[*+**/2=] 16397327254904443190090006                [REAL 16352460426841680446427399]

Desviació Gauss [x/Lnx] +1,64%.              Desviació Àvalon +0,274373%

 

T23 [6 + # {1027 = x ≤ Primers ≤ x = 1028] = [158351021011559818652117950]  ≤ (# {Primers ≤ x = 1028}) ≤ [158351025250789888897118511] (=7)

[*+**/2=] 158351023131174853774618230              [REAL 157589269275973410412739598]

Desviació Gauss [x/Lnx] +1,58%.              Desviació Àvalon +0,483379%

 

T24 [7 + # {1028 = x ≤ Primers ≤ x = 1029] = [1532721820299018799365677467]  ≤ (# {Primers ≤ x = 1029}) ≤ [1532721863879661512157651167] (=8)

[*+**/2=] 1532721842089340155761664317           [REAL 1520698109714272166094258063]

Desviació Gauss [x/Lnx] +1,52%.              Desviació Àvalon +0,790671%

 

Valors Progressius Primers

180340017203297174362 P17

1.- Tram 18, P18. 1022_1023.

Càlculs

x17 1,0484017870, Pn+1 = Pnxn. P18 = P17x17 = 1723944032255934610029.

β17 0,8142694928, Pn+1 = ee^(βn) + LnPn. P18 = 1723944028047688854980.

A17 3,3059277179, Pn+1 = eLnPn (An  + LnPn) / LnPn + 1. P18 = 1723944028132073169230.

17 0,9573584355, = A17 α17 = 3,141592653746817318111551536395]

[e = (A17-1)1/β17 (1+(LnP17)-1)-1/β17 = 2,718281828531382259262019566688]

k17 8,2173114042, Pn+1 = (P11/n + P11/n kn)n.  P18 = 1723944028101036434402.

ζ17 8,559409247, Pn+1 = (Pn + Pn ζn). P18 = 1723944028057338087485.

17 0,045059162, Pn+1 = eln10 Pn – ∆n. P18 = 1723944028205816365084.

σ17 52,20587127, Pn+1 = 9·10n+5n. P18 = 1723944027953007669437.

δ17 0,0191549336, Pn+1 = δn 9·10n+5. P18 = 1723944024000000000000

Ordenats de major a menor P18 (x, ∆, A, k, ζ, β, σ, δ)

1723944032255934610029, x17

1723944028205816365084, ∆17

1723944028132073169230, A17

1723944028101036434402, k17

1723944028057338087485, ζ17

1723944028047688854980, β17

1723944027953007669437, σ17

1723944024000000000000, δ17

 

2.- Tram 19, P19. 1023_1024.

                            Càlculs

x18 1,0462097659, Pn+1 = Pnx. P19 = P18x18 = 16514214688989440660004

β18 0,8151908144, Pn+1 = ee^(βn) + LnPn. P19 = 16514214619318147353496

A18 3,3058165625, Pn+1 = eLnPn (An  + LnPn) / LnPn + 1. P19 = 16514214618555616532675

18 0,9573853572, = A18 α18 = 3,1415926536627938166117798652309]

[e = (A18-1)1/β18 (1+(LnP18)-1)-1/β18 = 2,7182818283185592844735050023358]

k18 8,2370593195, Pn+1 = (P11/n + P11/n kn)n. P19 = 16514214618243041367842

ζ18 8,579321805, Pn+1 = (Pn + Pn ζn). P19 = 16514214618569190531702

18 0,042978296, Pn+1 = eln10 Pn – ∆n. P19 = 16514214625174470059193

σ18 54,49850452, Pn+1 = 9·10n+5n. P19 = 16514214617939024503713

Ordenats de major a menor P19 (x, ∆, β, ζ, A, k, σ)

16514214688989440660004, x18

16514214625174470059193, ∆18

16514214619318147353496, β18

16514214618569190531702, ζ18

16514214618555616532675, A18

16514214618243041367842, k18

16514214617939024503713, σ18

3.- Tram 20, P20. 1024_1025.

Càlculs

x19 1,0442084969, Pn+1 = Pnx. P20 = P19x19 = 158517067508467021616439

β19 0,8160905502, Pn+1 = ee^(βn) + LnPn. P20 = 158517066540034667967552

A19 3,3058492576, Pn+1 = eLnPn (An  +  LnPn) / LnPn + 1. P20 = 158517066531977736894811

19 0,9573774382] ᴫ = A19 α19 = 3,1415926535515878544617954412875

k19 8,2557551501, Pn+1 = (P11/n + P11/n kn)n. P20 = 158517066533245502281331

ζ19 8,598825629, Pn+1 = (Pn + Pn ζn). P20 = 158517066523528405385485

19 0,040944332, Pn+1 = eln10 Pn – ∆n. P20 = 158517066636837117673275

σ19 56,77622099, Pn+1 = 9·10n+5n. P20 = 158517066530108981104978

Ordenats de majors a menors

158517067508467021616439, x19

158517066636837117673275, ∆19

158517066540034667967552, β19

158517066533245502281331, k19

158517066531977736894811, A19

158517066530108981104978, σ19

158517066523528405385485, ζ19