La revista degana en valencià

Hipòtesi Àvalon. Annex III (b)

Taula de Primers més enllà de 1022

201467286689315906290 = # {Primers ≤ x = 1022} = 1 REAL

 

4.- Tram 21, P21. 1025_1026.

Càlculs

x20 1,0423750077, Pn+1 = Pnx. P21 = P20x20 = 1524682550204370218534749

β20 0,8169914692, Pn+1 = ee^(βn) + LnPn. P21 = 1524682539930379961838030

A20 3,3060542417, Pn+1 = eLnPn (An  +  LnPn) / LnPn + 1. P21 = 1524682539889696848753019

20 0,9573277945], ᴫ = A20α20 = 3,1415926537052375616842237410935

k20 8,2735588959, Pn+1 = (P11/n + P11/n kn)n. P21 = 1524682539822176238878485

ζ20 8,6184125364, Pn+1 = (Pn + Pn ζn). P21 = 1524682539883258379921250

20 0,0389058589, Pn+1 = eln10 Pn – ∆n. P21 = 1524682541031877393473586

σ20 59,0286814769, Pn+1 = 9·10n+5n. P21 = 1524682539880552247660160

Ordenats de majors a menors

1524682550204370218534749, x20

1524682541031877393473586, ∆20

1524682539930379961838030, β20

1524682539889696848753019, A20

1524682539883258379921250, ζ20

1524682539880552247660160, σ20

1524682539822176238878485, k20

 

5.- Tram 22, P22. 1026_1027.

Càlculs

x21 1,0406898729, Pn+1 = Pnx. P22 = P21x21 = 14695688141774904562112384

β21 0,8179137312, Pn+1 = ee^(βn) + LnPn. P22 = 14695687892034923894396708

A21 3,3064577752, Pn+1 = eLnPn (An  +  LnPn) / LnPn + 1. P22 = 14695687895898252945187245

21] 0,9572300894 , ᴫ = A21α21 = 3,1415926535963569673999304719203

k21 8,2906205570, Pn+1 = (P11/n + P11/n kn)n. P22 = 14695688038436908598856459

ζ21 8,6385232043, Pn+1 = (Pn + Pn ζn). P22 = 14695688039855846107963393

21 0,0368171907, Pn+1 = eln10 Pn – ∆n. P22 = 14695687906844842565522824

σ21 61,2424540832, Pn+1 = 9·10n+5n. P22 =               14695688039824771801054526

Ordenats de majors a menors

14695688141774904562112384, x21

14695688039855846107963393, ζ21

14695688039824771801054526, σ21

14695688038436908598856459, k21

14695687906844842565522824, ∆21

14695687895898252945187245, A21

14695687892034923894396708, β21

 

6.- Tram 23, P23. 1027_1028.

Càlculs

x22 1,0391365419, Pn+1 = Pnx. P23 = P22x22 = 141953697865294212403678616

β22 0,8188749312, Pn+1 = ee^(βn) + LnPn. P23 = 141953693887246608765377832

A22 3,3070833473, Pn+1 = eLnPn (An  +  LnPn) / LnPn + 1. P23 = 141953693962898668829270103

22] 0,9570786865, ᴫ = A22α22 = 3,1415926537031071918847122459146

k22 8,3070801334, Pn+1 = (P11/n + P11/n kn)n. P23 = 141953696781526583377785416

ζ22 8,6595475088, Pn+1 = (Pn + Pn ζn). P23 = 141953696795491493383293968

22 0,0346382876, Pn+1 = eln10 Pn – ∆n. P23 = 141953694067950593506269018

σ22 63,4009554044, Pn+1 = 9·10n+5n. P23 = 141953696795165388534527860

Ordenats de majors a menors

141953697865294212403678616, x22

141953696795491493383293968, ζ22

141953696795165388534527860, σ22

141953696781526583377785416, k22

141953694067950593506269018, ∆22

141953693962898668829270103, A22

141953693887246608765377832, β22

 

7.- Tram 24, P24. 1028_1029.

Càlculs

x23 1,0377008141, Pn+1 = Pnx. P24 = P23x23 = 1374370838628871623260532656

β23 0,8198901337, Pn+1 = ee^(βn) + LnPn. P24 = 1374370799287458980713559517

A23 3,3079512140, Pn+1 = eLnPn (An  +  LnPn) / LnPn + 1. P23 = 1374370800119998556382713318

23] 0,9568687693, ᴫ = A23α23 = 3,1415926534930017615857840655907

k23 8,3230676251, Pn+1 = (P11/n + P11/n kn)n. P24 = 1374370827469640276565818901

ζ23 8,6818248383, Pn+1 = (Pn + Pn ζn). P24 = 1374370827523096656094735641

23 0,0323346931, Pn+1 = eln10 Pn – ∆n. P24 = 1374370801140522181742909114

σ23 65,4845098555, Pn+1 = 9·10n+5n. P24 = 1374370827522364977259228773

Ordenats de majors a menors

1374370838628871623260532656, x23

1374370827523096656094735641, ζ23

1374370827522364977259228773, σ23

1374370827469640276565818901, k23

1374370801140522181742909114, ∆23

1374370800119998556382713318, A23

1374370799287458980713559517, β23

 

Carreres de nombre primers:

1.- Ordenats de major a menor P18 (x, ∆, A, k, ζ, β, σ)

2.- Ordenats de major a menor P19 (x, ∆, β, ζ, A, k, σ)

3.- Ordenats de major a menor P20 (x, ∆, β, k, A, σ, ζ)

4.- Ordenats de major a menor P21 (x, ∆, β, A, ζ, σ, k)

5.- Ordenats de major a menor P22 (x, ζ, σ, k, ∆, A, β)

6.- Ordenats de major a menor P23 (x, ζ, σ, k, ∆, A, β)

7.- Ordenats de major a menor P24 (x, ζ, σ, k, ∆, A, β)

Carrers de Pi:

1.- ᴫ = A17 α17 = 3,141592653746817318111551536395

4.- ᴫ = A20 α20 = 3,1415926537052375616842237410935

6.- ᴫ = A22 α22 = 3,1415926537031071918847122459146

2.- ᴫ = A18 α18 = 3,1415926536627938166117798652309

5.- ᴫ = A21 α21 = 3,1415926535963569673999304719203

3.- ᴫ = A19 α19 = 3,1415926535515878544617954412875

7.- ᴫ = A23 α23 = 3,1415926534930017615857840655907

 

RESERVA DE VARIABLES I VALORS DE PRIMERS PER TRAMS CORRESPONENTS

X

1,0406898729 x21, 1,0391365419 x22, 1,0377008141 x23, 1,0363704250 x24, 1,0351347167 x25, 1,0339843735 x26, 1,0329112081 x27, 1,0319079877 x28, 1,0309682909 x29, 1,0300863901 x30, 1,0292571541 x31, 1,0284759664  x32, 1,0277386570 x33, 1,0270414449 x34, 1,0263808895 x35, 1,0257542274 x36, 1,0251589592 x37, 1,0245928187               x38, 1,0240537455 x39, 1,0235398621 x40, 1,0230494537 x41, 1,0225809504 x42, 1,0221329120   x43, 1,0217040147 x44, 1,0212930770 x45, 1,0208990111 x46, 1,0205208145 x47, 1,0201575609 x48, 1,0198083939 x49, 1,0194725200 x50, 1,0191492029 x51, 1,0188377588 x52, 1,0185375513 x53, 1,0182479917 x54, 1,0179685306              x55, 1,0176986558 x56, 1,0174378880 x57, 1,0171857794 x58, 1,0169419100 x59, 1,0167058866   x60, 1,0164773397 x61, 1,0162559224     x62, 1,0160413089 x63, 1,0158331924 x64, 1,0156312842 x65, 1,0154353117 x66, 1,0152450180               x67, 1,0150601604 x68, 1,0148805094 x69, 1,0147058482 x70, 1,0145359714              x71, 1,0143706844 x72

 

Tram 22, P22. 1026_1027. P22 = P21x21 = 14695688141774904562112384, x21. 26 dígits.

P23 = P22x22 = 141953697865294212403678616, x22

P24 = P23x23 = 1374370838628871623260532656, x23

P25 = P24x24 = 13339154581482237970599813767, x24

P26 = P25x25 = 129806583834275273163610583078, x25

P27 = P26x26 = 1266758625570482228621904954533, x26

P28 = P27x27 = 12399663299473326816779993245116, x27

P29 = P28x28 = 121769362643040095373851516658920, x28­

P30 = P29x29 = 1199975304548124996132214659698100, x29

P31 = P30x30 = 1,1868755699351501611351626558941e+34, x30

P32 = P31x31 = 1,1784884056626904909967271922779e+35, x31

P33 = P32x32 = 1,1749386638144873940322252791689e+36, x32

P34 = P33x33 = 1,1763836366532272482741124683145e+37, x33

P35 = P34x34 = 1,1830148123929687944775285717987e+38, x34

P36 = P35x35 = 1,1950595020278141055888764566739e+39, x35

Tram 37, P37. 1041_1042. P37 = P36x36 = 1,2128232266276392663244103495663e+40, x36. 41 dígits.