Taula de Primers més enllà de 1022
201467286689315906290 = # {Primers ≤ x = 1022} = 1 REAL
4.- Tram 21, P21. 1025_1026.
Càlculs
x20 1,0423750077, Pn+1 = Pnx. P21 = P20x20 = 1524682550204370218534749
β20 0,8169914692, Pn+1 = ee^(βn) + LnPn. P21 = 1524682539930379961838030
A20 3,3060542417, Pn+1 = eLnPn (An + LnPn) / LnPn + 1. P21 = 1524682539889696848753019
[α20 0,9573277945], ᴫ = A20α20 = 3,1415926537052375616842237410935
k20 8,2735588959, Pn+1 = (P11/n + P11/n kn)n. P21 = 1524682539822176238878485
ζ20 8,6184125364, Pn+1 = (Pn + Pn ζn). P21 = 1524682539883258379921250
∆20 0,0389058589, Pn+1 = eln10 Pn – ∆n. P21 = 1524682541031877393473586
σ20 59,0286814769, Pn+1 = 9·10n+5/σn. P21 = 1524682539880552247660160
Ordenats de majors a menors
1524682550204370218534749, x20
1524682541031877393473586, ∆20
1524682539930379961838030, β20
1524682539889696848753019, A20
1524682539883258379921250, ζ20
1524682539880552247660160, σ20
1524682539822176238878485, k20
5.- Tram 22, P22. 1026_1027.
Càlculs
x21 1,0406898729, Pn+1 = Pnx. P22 = P21x21 = 14695688141774904562112384
β21 0,8179137312, Pn+1 = ee^(βn) + LnPn. P22 = 14695687892034923894396708
A21 3,3064577752, Pn+1 = eLnPn (An + LnPn) / LnPn + 1. P22 = 14695687895898252945187245
[α21] 0,9572300894 , ᴫ = A21α21 = 3,1415926535963569673999304719203
k21 8,2906205570, Pn+1 = (P11/n + P11/n kn)n. P22 = 14695688038436908598856459
ζ21 8,6385232043, Pn+1 = (Pn + Pn ζn). P22 = 14695688039855846107963393
∆21 0,0368171907, Pn+1 = eln10 Pn – ∆n. P22 = 14695687906844842565522824
σ21 61,2424540832, Pn+1 = 9·10n+5/σn. P22 = 14695688039824771801054526
Ordenats de majors a menors
14695688141774904562112384, x21
14695688039855846107963393, ζ21
14695688039824771801054526, σ21
14695688038436908598856459, k21
14695687906844842565522824, ∆21
14695687895898252945187245, A21
14695687892034923894396708, β21
6.- Tram 23, P23. 1027_1028.
Càlculs
x22 1,0391365419, Pn+1 = Pnx. P23 = P22x22 = 141953697865294212403678616
β22 0,8188749312, Pn+1 = ee^(βn) + LnPn. P23 = 141953693887246608765377832
A22 3,3070833473, Pn+1 = eLnPn (An + LnPn) / LnPn + 1. P23 = 141953693962898668829270103
[α22] 0,9570786865, ᴫ = A22α22 = 3,1415926537031071918847122459146
k22 8,3070801334, Pn+1 = (P11/n + P11/n kn)n. P23 = 141953696781526583377785416
ζ22 8,6595475088, Pn+1 = (Pn + Pn ζn). P23 = 141953696795491493383293968
∆22 0,0346382876, Pn+1 = eln10 Pn – ∆n. P23 = 141953694067950593506269018
σ22 63,4009554044, Pn+1 = 9·10n+5/σn. P23 = 141953696795165388534527860
Ordenats de majors a menors
141953697865294212403678616, x22
141953696795491493383293968, ζ22
141953696795165388534527860, σ22
141953696781526583377785416, k22
141953694067950593506269018, ∆22
141953693962898668829270103, A22
141953693887246608765377832, β22
7.- Tram 24, P24. 1028_1029.
Càlculs
x23 1,0377008141, Pn+1 = Pnx. P24 = P23x23 = 1374370838628871623260532656
β23 0,8198901337, Pn+1 = ee^(βn) + LnPn. P24 = 1374370799287458980713559517
A23 3,3079512140, Pn+1 = eLnPn (An + LnPn) / LnPn + 1. P23 = 1374370800119998556382713318
[α23] 0,9568687693, ᴫ = A23α23 = 3,1415926534930017615857840655907
k23 8,3230676251, Pn+1 = (P11/n + P11/n kn)n. P24 = 1374370827469640276565818901
ζ23 8,6818248383, Pn+1 = (Pn + Pn ζn). P24 = 1374370827523096656094735641
∆23 0,0323346931, Pn+1 = eln10 Pn – ∆n. P24 = 1374370801140522181742909114
σ23 65,4845098555, Pn+1 = 9·10n+5/σn. P24 = 1374370827522364977259228773
Ordenats de majors a menors
1374370838628871623260532656, x23
1374370827523096656094735641, ζ23
1374370827522364977259228773, σ23
1374370827469640276565818901, k23
1374370801140522181742909114, ∆23
1374370800119998556382713318, A23
1374370799287458980713559517, β23
Carreres de nombre primers:
1.- Ordenats de major a menor P18 (x, ∆, A, k, ζ, β, σ)
2.- Ordenats de major a menor P19 (x, ∆, β, ζ, A, k, σ)
3.- Ordenats de major a menor P20 (x, ∆, β, k, A, σ, ζ)
4.- Ordenats de major a menor P21 (x, ∆, β, A, ζ, σ, k)
5.- Ordenats de major a menor P22 (x, ζ, σ, k, ∆, A, β)
6.- Ordenats de major a menor P23 (x, ζ, σ, k, ∆, A, β)
7.- Ordenats de major a menor P24 (x, ζ, σ, k, ∆, A, β)
Carrers de Pi:
1.- ᴫ = A17 α17 = 3,141592653746817318111551536395
4.- ᴫ = A20 α20 = 3,1415926537052375616842237410935
6.- ᴫ = A22 α22 = 3,1415926537031071918847122459146
2.- ᴫ = A18 α18 = 3,1415926536627938166117798652309
5.- ᴫ = A21 α21 = 3,1415926535963569673999304719203
3.- ᴫ = A19 α19 = 3,1415926535515878544617954412875
7.- ᴫ = A23 α23 = 3,1415926534930017615857840655907
RESERVA DE VARIABLES I VALORS DE PRIMERS PER TRAMS CORRESPONENTS
X
1,0406898729 x21, 1,0391365419 x22, 1,0377008141 x23, 1,0363704250 x24, 1,0351347167 x25, 1,0339843735 x26, 1,0329112081 x27, 1,0319079877 x28, 1,0309682909 x29, 1,0300863901 x30, 1,0292571541 x31, 1,0284759664 x32, 1,0277386570 x33, 1,0270414449 x34, 1,0263808895 x35, 1,0257542274 x36, 1,0251589592 x37, 1,0245928187 x38, 1,0240537455 x39, 1,0235398621 x40, 1,0230494537 x41, 1,0225809504 x42, 1,0221329120 x43, 1,0217040147 x44, 1,0212930770 x45, 1,0208990111 x46, 1,0205208145 x47, 1,0201575609 x48, 1,0198083939 x49, 1,0194725200 x50, 1,0191492029 x51, 1,0188377588 x52, 1,0185375513 x53, 1,0182479917 x54, 1,0179685306 x55, 1,0176986558 x56, 1,0174378880 x57, 1,0171857794 x58, 1,0169419100 x59, 1,0167058866 x60, 1,0164773397 x61, 1,0162559224 x62, 1,0160413089 x63, 1,0158331924 x64, 1,0156312842 x65, 1,0154353117 x66, 1,0152450180 x67, 1,0150601604 x68, 1,0148805094 x69, 1,0147058482 x70, 1,0145359714 x71, 1,0143706844 x72 …
Tram 22, P22. 1026_1027. P22 = P21x21 = 14695688141774904562112384, x21. 26 dígits.
P23 = P22x22 = 141953697865294212403678616, x22
P24 = P23x23 = 1374370838628871623260532656, x23
P25 = P24x24 = 13339154581482237970599813767, x24
P26 = P25x25 = 129806583834275273163610583078, x25
P27 = P26x26 = 1266758625570482228621904954533, x26
P28 = P27x27 = 12399663299473326816779993245116, x27
P29 = P28x28 = 121769362643040095373851516658920, x28
P30 = P29x29 = 1199975304548124996132214659698100, x29
P31 = P30x30 = 1,1868755699351501611351626558941e+34, x30
P32 = P31x31 = 1,1784884056626904909967271922779e+35, x31
P33 = P32x32 = 1,1749386638144873940322252791689e+36, x32
P34 = P33x33 = 1,1763836366532272482741124683145e+37, x33
P35 = P34x34 = 1,1830148123929687944775285717987e+38, x34
P36 = P35x35 = 1,1950595020278141055888764566739e+39, x35
Tram 37, P37. 1041_1042. P37 = P36x36 = 1,2128232266276392663244103495663e+40, x36. 41 dígits.
…
![logo-3[1]](https://revistasao.cat/wp-content/uploads/2018/02/logo-31.png)
